
Practical Dynamic Extension for Sampling Indexes

DOUGLAS B. RUMBAUGH, The Pennsylvania State University, USA
DONG XIE, The Pennsylvania State University, USA

The execution of analytical queries on massive datasets presents challenges due to long response times and
high computational costs. As a result, the analysis of representative samples of data has emerged as an
attractive alternative; this avoids the cost of processing queries against the entire dataset, while still producing
statistically valid results. Unfortunately, the sampling techniques in common use sacrifice either sample quality
or performance, and so are poorly suited for this task. However, it is possible to build high quality sample
sets efficiently with the assistance of indexes. This introduces a new challenge: real-world data is subject to
continuous update, and so the indexes must be kept up to date. This is difficult, because existing sampling
indexes present a dichotomy; efficient sampling indexes are difficult to update, while easily updatable indexes
have poor sampling performance. This paper seeks to address this gap by proposing a general and practical
framework for extending most sampling indexes with efficient update support, based on splitting indexes
into smaller shards, combined with a systematic approach to the periodic reconstruction. The framework’s
design space is examined, with an eye towards exploring trade-offs between update performance, sampling
performance, and memory usage. Three existing static sampling indexes are extended using this framework to
support updates, and the generalization of the framework to concurrent operations and larger-than-memory
data is discussed. Through a comprehensive suite of benchmarks, the extended indexes are shown to match or
exceed the update throughput of state-of-the-art dynamic baselines, while presenting significant improvements
in sampling latency.

CCS Concepts: • Information systems→ Data structures.

Additional Key Words and Phrases: Sampling Indexes, Dynamic Extension, Independent Range Sampling

ACM Reference Format:
Douglas B. Rumbaugh and Dong Xie. 2023. Practical Dynamic Extension for Sampling Indexes. 1, 1 (Octo-
ber 2023), 26 pages. https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION
The collection and storage of vast amounts of data has grown progressively easier, while criti-
cal decision making processes have become increasingly data-driven in their approach. At the
convergence of these trends, an interest in the execution of analytical queries against massive
datasets has emerged. Unfortunately, such queries require vast computational resources and have
lengthy response times. An attractive technique for resolving this difficulty is to analyze a smaller
representative sample of the data, thereby avoiding the overhead of processing the dataset in full.
An extensive body of work has developed around this technique, including approximate query pro-
cessing (AQP) [7, 15, 30, 43], interactive data exploration [22, 50], financial audit sampling [36], and
feature selection for machine learning [29]. However, sampling for analysis is non-trivial; samples
must be independent and identically distributed to ensure statistical validity [14], representativeness,

Authors’ addresses: Douglas B. Rumbaugh, The Pennsylvania State University, University Park, Pennsylvania, USA,
drumbaugh@psu.edu; Dong Xie, The Pennsylvania State University, University Park, Pennsylvania, USA, dongx@psu.edu.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee. Request permissions from permissions@acm.org.
© 2023 Association for Computing Machinery.
XXXX-XXXX/2023/10-ART $15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

, Vol. 1, No. 1, Article . Publication date: October 2023.

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

and fairness [46]. When sampling from the result set of a database query (often called independent
query sampling) inter-query independence is also important [27]. The sampling techniques used in
practice either sacrifice these properties, or pay a sufficiently large cost in their maintenance to
render them of limited utility in analytical contexts. For example, SQL’s TABLESAMPLE operator is
often implemented using Bernoulli sampling. This technique requires the processing of the query
in full, which negates most of the performance benefits of sampling [25]. More efficient techniques,
such as block or systematic sampling (used in Postgres [3]), fail to preserve independence [25].
Reservoir sampling, which produces pre-collected offline samples [7, 22, 43, 47], is not robust
against changes in data distribution.
Ideally, an independent query sampling technique would both maintain statistical validity and

avoid the overhead of query execution against the entire dataset. The above techniques fail to satisfy
both of these requirements, but both can be achieved with the help of indexes. There exist two main
approaches for index-assisted sampling; namely, the use of data structures designed specifically for
efficient sampling [46] and the use of randomized traversals of search trees to sample records [36].
Both of these techniques maintain statistical validity while avoiding processing the full database
query, but they each are associated with a significant limitation.

The former approach is appealing because the cost of drawing sample sets using these specialized
indexes is often near-constant with respect to the dataset size. After paying a one-time cost per
query, samples can be drawn in constant time. These indexes are predominately based upon
Walker’s alias structure [48, 49], which is a data structure that supports drawing independent
samples from a set of weighted items in constant time. Unfortunately, adding or removing a single
item from an alias structure requires a complete reconstruction. Because real-world datasets are
constantly changing and timely analytical results require that samples reflect the current state of
the data, these sampling indexes are not practical for most systems. Tree-traversal based sampling
provides an alternative approach. Randomized tree-traversals are combined with rejection sampling
to select records for inclusion in the sample set [36]. This allows for updates, but requires a full
tree-traversal for each record sampled.
There exist a wide range of complex indexes that facilitate independent sampling [5, 6, 27, 50],

but a recent survey [46] has shown that nearly all of them rely on these two techniques. Thus, the
selection of a sampling index presents an apparent dichotomy: indexes based on alias structures
achieve superior sampling performance, but face difficulty handling updates; tree-traversal based
approaches enable support for efficient updates, but exhibit worse sampling performance.
This paper seeks to overcome the dichotomous relationship between the update support and

sampling performance of index-assisted sampling techniques by proposing a general and practical
framework that is capable of extending most static sampling indexes with efficient support for
updates. This framework is based upon the principle of dividing a static index into smaller pieces,
which can be systematically reconstructed to support data updates. It draws inspiration from the
Bentley-Saxe method [42, 44] and the well-studied design space of the LSM tree [11, 17–19, 21],
with the aim of achieving efficient update support while maintaining a sampling performance
advantage over tree-traversal based techniques. The key contributions of this paper are,

• The creation of a general framework for extending static sampling indexes with support
for updates, while maintaining efficient sampling performance. In particular, three concrete
examples of the application of the framework to existing sampling indexes are proposed.

• An exploration of the design space of the framework, discussing trade-offs between update
performance, sampling performance, and memory usage.

• A discussion of the generalization of the framework to support larger-than-memory data
and concurrent updates.

• A comprehensive evaluation of the trade-offs within the framework’s design space, as well as
an evaluation of the performance of the framework compared to existing dynamic sampling
solutions.

The remainder of the paper is structured as follows: In Section 2, the sampling problem is
formalized, existing solutions described, and the dichotomous relationship between update support
and sampling performance for sampling indexes discussed. Next, a general framework for extending
static sampling indexes with support for updates, inspired the Bentley-Saxe method [44] and the
LSM tree [40] is proposed in Section 3. Section 4 demonstrates specific instantiations of the
framework to extend three static sampling indexes with support for updates, and formally analyzes
the resulting update and sampling costs. Larger-than-memory and concurrent extensions are
discussed in Section 5. A comprehensive evaluation and exploration of the design space of the
framework and comparison against existing solutions is presented in Section 6. Finally, Section 7
provides a more detailed connection to related works, and Section 8 concludes the paper.

2 BACKGROUND
This section formalizes the sampling problem, describes relevant existing solutions, and presents
the dichotomy between update support and sampling performance for sampling indexes. Before
discussing these topics, though, a clarification of definition is in order. The nomenclature used to
describe sampling varies slightly throughout the literature. In this paper, the term sample is used to
indicate a single record selected by a sampling operation, and a collection of these samples is called
a sample set; the number of samples within a sample set is the sample size. The term sampling is
used to indicate the selection of either a single sample or a sample set; the specific usage should be
clear from context.
Independent Sampling Problem. When conducting sampling, it is often desirable for the drawn
samples to have statistical independence. This requires that the sampling of a record does not affect
the probability of any other record being sampled in the future. Independence is a requirement
for the application of statistical tools such as the Central Limit Theorem [14], which is the basis
for many concentration bounds. A failure to maintain independence in sampling invalidates any
guarantees provided by these statistical methods.

In each of the problems considered, sampling can be performed either with replacement (WR) or
without replacement (WoR). It is possible to answer any WoR sampling query using a constant
number of WR queries, followed by a deduplication step [28], and so this paper focuses exclusively
on WR sampling.

A basic version of the independent sampling problem is weighted set sampling (WSS),1 in which
each record is associated with a weight that determines its probability of being sampled. More
formally, WSS is defined as:

Definition 1 (Weighted Set Sampling [49]). Let𝐷 be a set of data whose members are associated
with positive weights𝑤 : 𝐷 → R+. Given an integer 𝑘 ≥ 1, a weighted set sampling query returns 𝑘
independent random samples from 𝐷 with each data point 𝑑 ∈ 𝐷 having a probability of 𝑤 (𝑑)∑

𝑝∈𝐷 𝑤 (𝑝) of
being sampled.

Each query returns a sample set of size 𝑘 , rather than a single sample. Queries returning sample
sets are the common case, because the robustness of analysis relies on having a sufficiently large
sample size [12]. The common simple random sampling (SRS) problem is a special case of WSS,
where every element has unit weight.
1This nomenclature is adopted from Tao’s recent survey of sampling techniques [46]. This problem is also called weighted
random sampling (WRS) in the literature.

1

0.15 0.10 0.25 0.25

0.10 0.15

1 3 4
3

w(1) = .30, w(2) = .10
w(3) = .35, w(4) = .25

(2) Select
item

(1) Select
cell

2

Fig. 1. A pictorial representation of an alias structure, built over a set of weighted records. Sampling is
performed by first (1) selecting a cell by uniformly generating an integer index on [0, 𝑛), and then (2) selecting
an item by generating a second uniform float on [0, 1] and comparing it to the cell’s normalized cutoff values.
In this example, the first random number is 0, corresponding to the first cell, and the second is .7. This is
larger than .15/.25, and so 3 is selected as the result of the query. This allows 𝑂 (1) independent weighted set
sampling, but adding a new element requires a weight adjustment to every element in the structure, and so
isn’t generally possible without performing a full reconstruction.

In the context of databases, it is also common to discuss a more general version of the sampling
problem, called independent query sampling (IQS) [27]. An IQS query samples a specified number
of records from the result set of a database query. In this context, it is insufficient to merely ensure
individual records are sampled independently; the sample sets returned by repeated IQS queries
must be independent as well. This provides a variety of useful properties, such as fairness and
representativeness of query results [46]. As a concrete example, consider simple random sampling
on the result set of a single-dimensional range reporting query. This is called independent range
sampling (IRS), and is formally defined as:

Definition 2 (Independent Range Sampling [46]). Let 𝐷 be a set of 𝑛 points in R. Given a query
interval 𝑞 = [𝑥,𝑦] and an integer 𝑘 , an independent range sampling query returns 𝑘 independent
samples from 𝐷 ∩ 𝑞 with each point having equal probability of being sampled.

A generalization of IRS exists, calledWeighted Independent Range Sampling (WIRS) [6], which
is similar to WSS. Each point in 𝐷 is associated with a positive weight𝑤 : 𝐷 → R+, and samples
are drawn from the range query results 𝐷 ∩ 𝑞 such that each data point has a probability of
𝑤 (𝑑)/∑𝑝∈𝐷∩𝑞 𝑤 (𝑝) of being sampled.
Existing Solutions.While many sampling techniques exist, few are supported in practical database
systems. The existing TABLESAMPLE operator provided by SQL in all major DBMS implementa-
tions [3] requires either a linear scan (e.g., Bernoulli sampling) that results in high sample retrieval
costs, or relaxed statistical guarantees (e.g., block sampling [3] used in PostgreSQL).

Index-assisted sampling solutions have been studied extensively. Olken’s method [38] is a classical
solution to independent sampling problems. This algorithm operates upon traditional search trees,
such as the B+tree used commonly as a database index. It conducts a random walk on the tree
uniformly from the root to a leaf, resulting in a 𝑂 (log𝑛) sampling cost for each returned record.
Should weighted samples be desired, rejection sampling can be performed. A sampled record, 𝑟 ,
is accepted with probability 𝑤 (𝑟)/𝑤𝑚𝑎𝑥 , with an expected number of 𝑤𝑚𝑎𝑥/𝑤𝑎𝑣𝑔 samples to be taken
per element in the sample set. Olken’s method can also be extended to support general IQS by
rejecting all sampled records failing to satisfy the query predicate. It can be accelerated by adding
aggregated weight tags to internal nodes [36, 53], allowing rejection sampling to be performed
during the tree-traversal to abort dead-end traversals early.

There also exist static data structures, referred to in this paper as static sampling indexes (SSIs),
that are capable of answering sampling queries in near-constant time2 relative to the size of the
dataset. An example of such a structure is used in Walker’s alias method [48, 49], a technique for
answering WSS queries with 𝑂 (1) query cost per sample, but requiring 𝑂 (𝑛) time to construct. It
distributes the weight of items across 𝑛 cells, where each cell is partitioned into at most two items,
such that the total proportion of each cell assigned to an item is its total weight. A query selects one
cell uniformly at random, then chooses one of the two items in the cell by weight; thus, selecting
items with probability proportional to their weight in 𝑂 (1) time. A pictorial representation of this
structure is shown in Figure 1.
The alias method can also be used as the basis for creating SSIs capable of answering general

IQS queries using a technique called alias augmentation [46]. As a concrete example, previous
papers [6, 46] have proposed solutions for WIRS queries using 𝑂 (log𝑛 + 𝑘) time, where the log𝑛
cost is only be paid only once per query, after which elements can be sampled in constant time.
This structure is built by breaking the data up into disjoint chunks of size 𝑛/log𝑛, called fat points,
each with an alias structure. A B+tree is then constructed, using the fat points as its leaf nodes.
The internal nodes are augmented with an alias structure over the total weight of each child. This
alias structure is used instead of rejection sampling to determine the traversal path to take through
the tree, and then the alias structure of the fat point is used to sample a record. Because rejection
sampling is not used during the traversal, two traversals suffice to establish the valid range of
records for sampling, after which samples can be collected without requiring per-sample traversals.
More examples of alias augmentation applied to different IQS problems can be found in a recent
survey by Tao [46].
There do exist specialized sampling indexes [27] with both efficient sampling and support for

updates, but these are restricted to specific query types and are often very complex structures, with
poor constant factors associated with sampling and update costs, and so are of limited practical
utility. There has also been work [8, 26, 34] on extending the alias structure to support weight
updates over a fixed set of elements. However, these solutions do not allow insertion or deletion in
the underlying dataset, and so are not well suited to database sampling applications.
The Dichotomy. Among these techniques, there exists a clear trade-off between efficient sampling
and support for updates. Tree-traversal based sampling solutions pay a dataset size based cost per
sample, in exchange for update support. The static solutions lack support for updates, but support
near-constant time sampling. While some data structures exist with support for both, these are
restricted to highly specialized query types. Thus in the general case there exists a dichotomy:
existing sampling indexes can support either data updates or efficient sampling, but not both.

3 DYNAMIC SAMPLING INDEX FRAMEWORK
This paper is an attempt to achieve the best of both worlds: the construction of a general sampling
index capable of reasonably efficient updates whilst maintaining a near-constant cost per sample.
Creating updatable indexes from scratch is necessarily problem-specific, and so instead a more
general solution has been developed. Existing static indexes are extended with support for updates
by breaking them into smaller structures and systematically reconstructing these structures to
included updated records.

In practice, it is common to update static indexes with new data by occasionally reconstructing
them during periods of low system utilization. While this ensures that updates will eventually
appear in the index, it introduces a freshness problem. New data will not be available until the

2The designation “near-constant” is not used in the technical sense of being constant to within a polylogarithmic factor (i.e.,
𝑂̃ (1)). It is instead used to mean constant to within an additive polylogarithmic term, i.e., 𝑓 (𝑥) ∈ 𝑂 (log𝑛 + 1) .

index is next rebuilt. This can be ameliorated by increasing the frequency of reconstruction, thereby
reducing the delay before new updates are present within the index. Pushing this approach to its
natural conclusion, a full reconstruction on each update would ensure constant availability of the
latest data. Unfortunately, this naïve strategy is too costly to be generally viable.
A more systematic approach to index reconstruction is provided by the Bentley-Saxe method

and its derivatives [42, 44]. This method partitions the dataset into multiple disjoint shards, and
builds data structures over each shard. The insertion or removal of an element only requires the
reconstruction of one of these shards, reducing average reconstruction costs. However, this method
can only be applied to data structures which answer a decomposable search problem (DSP). A query
is a DSP if there is an efficient result merge operation, such that querying each shard and merging
the results together produces the same result as would have been achieved by querying the entire
dataset as a whole. For performance reasons, Bentley-Saxe requires that the merge operation
be constant time, but this is not a correctness requirement and more general DSP definitions
exist without it [41]. Unfortunately, the concept of decomposability is not cleanly applicable to
sampling queries, because the distribution of records in the result set, rather than the records
themselves, must be matched following the result merge. Efficiently controlling the distribution
requires each sub-query to access information external to the shard against which it is being
processed, a contingency unaccounted for by Bentley-Saxe. Further, the process of reconstruction
used in Bentley-Saxe provides poor worst-case complexity bounds [44], and attempts to modify
the procedure to provide better worst-case performance are complex and have worse performance
in the common case [42]. Despite these limitations, this paper will argue that sharding can be
profitably applied to sampling indexes, once a system for controlling result set distributions and a
more effective shard reconstruction scheme have been devised. The solution to the former will be
discussed in Section 3.3. For the latter, inspiration is drawn from the literature on the LSM tree.
The LSM tree [40] is a data structure proposed to optimize write throughput in disk-based

storage engines. It consists of a memory table of bounded size, used to buffer recent changes,
and a hierarchy of external levels containing indexes of exponentially increasing size. When the
memory table has reached capacity, it is emptied into the external levels. Random writes are avoided
by treating the data within the external levels as immutable; all writes go through the memory
table. This introduces write amplification but maximizes sequential writes, which is important for
maintaining high throughput in disk-based systems. The LSM tree is associated with a broad and
well studied design space [11, 17–19, 21] containing trade-offs between three key performance
metrics: read performance, write performance, and auxiliary memory usage. The challenges faced
in reconstructing predominately in-memory indexes are quite different from those which the LSM
tree is intended to address, having little to do with disk-based systems and sequential IO operations.
But, the LSM tree possesses a rich design space for managing the periodic reconstruction of data
structures in a manner that is both more practical and more flexible than that of Bentley-Saxe. By
borrowing from this design space, this preexisting body of work can be leveraged, and many of
Bentley-Saxe’s limitations addressed.

3.1 Framework Overview
The goal of this paper is to build a general framework that extends most SSIs with efficient
support for updates by splitting the index into small shards to reduce reconstruction costs, and
then distributing the sampling process across these shards. This framework is designed to work
efficiently with any SSI, so long as it has the following properties,

A

A

A

MB

L0

L1

(3) Append to MB

A

A

A

MB

L0

L1

1 shard per level

Nb·s
i+1 records

(1) Combine L0 and L1

(2) Build shard from MB
 and combine with L0

Insert completed

shard

Nb records

(a) Leveling

s shards per level

Nb·s
i records

A

AA

A A

A
MB

L0

L1

(4) Append to MB

A

AA

A A

MB

L0

L1

(1) Combine shards in L0

(2) Emplace new
shard in L1

(3) Build shard from MB and emplace in L0

Insert completed

shard

(b) Tiering

Fig. 2. A graphical overview of the framework and its insert procedure. A mutable buffer (MB) sits atop two
levels (L0, L1) containing shards (pairs of SSIs and auxiliary structures [A]) using the leveling (Figure 2a)
and tiering (Figure 2b) layout policies. Records are represented as black/colored squares, and grey squares
represent unused capacity. An insertion requiring a multi-level reconstruction is illustrated.

(1) The underlying full query 𝑄 supported by the SSI from whose results samples are drawn
satisfies the following property: for any dataset 𝐷 = ∪𝑛

𝑖=1𝐷𝑖 where 𝐷𝑖 ∩ 𝐷 𝑗 = ∅, 𝑄 (𝐷) =

∪𝑛
𝑖=1𝑄 (𝐷𝑖).

(2) (Optional) The SSI supports efficient point-lookups.
(3) (Optional) The SSI is capable of efficiently reporting the total weight of all records returned

by the underlying full query.
The first property applies to the query being sampled from, and is essential for the correctness

of sample sets reported by extended sampling indexes.3 The latter two properties are optional,
but reduce deletion and sampling costs respectively. Should the SSI fail to support point-lookups,
an auxiliary hash table can be added to the shards. Should it fail to support query result weight
reporting, rejection sampling can be used in place of the more efficient scheme discussed in
Section 3.3. The analysis of this framework will generally assume that all three conditions are
satisfied.

Given an SSI with these properties, a dynamic extension can be produced as shown in Figure 2.
The extended index consists of disjoint shards containing an instance of the SSI being extended, and
optional auxiliary data structures. The auxiliary structures allow acceleration of certain operations
that are required by the framework, but which the SSI being extended does not itself support
efficiently. Examples of possible auxiliary structures include hash tables, Bloom filters [13], and
range filters [33, 52]. The shards are arranged into levels of increasing record capacity, with either
one shard, or up to a fixed maximum number of shards, per level. The decision to place one or
many shards per level is called the layout policy. The policy names are borrowed from the literature
on the LSM tree, with the former called leveling and the latter called tiering.
To avoid a reconstruction on every insert, an unsorted array of fixed capacity (𝑁𝑏), called the

mutable buffer, is used to buffer updates. Because it is unsorted, it is kept small tomaintain reasonably
efficient sampling and point-lookup performance. All updates are performed by appending new
3This condition is stricter than the definition of a decomposable search problem in the Bentley-Saxe method, which allows
for any constant-time merge operation, not just union. However, this condition is satisfied by many common types of
database query, such as predicate-based filtering queries.

Table 1. Frequently Used Notation

Variable Description
𝑁𝑏 Capacity of the mutable buffer
𝑠 Scale factor
𝐶𝑐 (𝑛) SSI initial construction cost
𝐶𝑟 (𝑛) SSI reconstruction cost
𝐿(𝑛) SSI point-lookup cost
𝑃 (𝑛) SSI sampling pre-processing cost
𝑆 (𝑛) SSI per-sample sampling cost
𝑊 (𝑛) Shard weight determination cost
𝑅(𝑛) Shard rejection check cost
𝛿 Maximum delete proportion

records to the tail of this buffer. If a record currently within the index is to be updated to a new
value, it must first be deleted, and then a record with the new value inserted. This ensures that old
versions of records are properly filtered from query results.

When the buffer is full, it is flushed to make room for new records. The flushing procedure is
based on the layout policy in use. When using leveling (Figure 2a) a new SSI is constructed using
both the records in 𝐿0 and those in the buffer. This is used to create a new shard, which replaces
the one previously in 𝐿0. When using tiering (Figure 2b) a new shard is built using only the records
from the buffer, and placed into 𝐿0 without altering the existing shards. Each level has a record
capacity of 𝑁𝑏 · 𝑠𝑖+1, controlled by a configurable parameter, 𝑠 , called the scale factor. Records are
organized in one large shard under leveling, or in 𝑠 shards of 𝑁𝑏 · 𝑠𝑖 capacity each under tiering.
When a level reaches its capacity, it must be emptied to make room for the records flushed into it.
This is accomplished by moving its records down to the next level of the index. Under leveling, this
requires constructing a new shard containing all records from both the source and target levels,
and placing this shard into the target, leaving the source empty. Under tiering, the shards in the
source level are combined into a single new shard that is placed into the target level. Should the
target be full, it is first emptied by applying the same procedure. New empty levels are dynamically
added as necessary to accommodate these reconstructions. Note that shard reconstructions are
not necessarily performed using merging, though merging can be used as an optimization of the
reconstruction procedure where such an algorithm exists. In general, reconstruction requires only
pooling the records of the shards being combined and then applying the SSI’s standard construction
algorithm to this set of records.
Table 1 lists frequently used notation for the various parameters of the framework, which will

be used in the coming analysis of the costs and trade-offs associated with operations within the
framework’s design space. The remainder of this section will discuss the performance characteristics
of insertion into this structure (Section 3.2), how it can be used to correctly answer sampling queries
(Section 3.2), and efficient approaches for supporting deletes (Section 3.4). Finally, it will close with
a detailed discussion of the trade-offs within the framework’s design space (Section 3.5).

3.2 Insertion
The framework supports inserting new records by first appending them to the end of the mutable
buffer. When it is full, the buffer is flushed into a sequence of levels containing shards of increasing
capacity, using a procedure determined by the layout policy as discussed in Section 3. This method
allows for the cost of repeated shard reconstruction to be effectively amortized.

1 2 99 100

199 200101 102

…

…

-2S1

S2

S3

w1 = .0050
w2 = .4975
w3 = .4975

k1 = 7
k2 = 498
k3 = 495

Shard Alias

Normalized
Weights

Shards
(1) (2) (3)

(4)

(5)

Sample
Set Sizes

Fig. 3. Overview of the sampling query process for Example 1 with 𝑘 = 1000. First, (1) the normalized weights
of the shards is determined, then (2) these weights are used to construct an alias structure. Next, (3) the alias
structure is queried 𝑘 times to determine per shard sample sizes, and then (4) sampling is performed. Finally,
(5) any rejected samples are retried starting from the alias structure, and the process is repeated until the
desired number of samples has been retrieved.

Let the cost of constructing the SSI from an arbitrary set of 𝑛 records be 𝐶𝑐 (𝑛) and the cost of
reconstructing the SSI given two or more shards containing 𝑛 records in total be 𝐶𝑟 (𝑛). The cost of
an insert is composed of three parts: appending to the mutable buffer, constructing a new shard
from the buffered records during a flush, and the total cost of reconstructing shards containing the
record over the lifetime of the index. The cost of appending to the mutable buffer is constant, and
the cost of constructing a shard from the buffer can be amortized across the records participating
in the buffer flush, giving 𝐶𝑐 (𝑁𝑏)/𝑁𝑏 . These costs are paid exactly once for each record. To derive an
expression for the cost of repeated reconstruction, first note that each record will participate in at
most 𝑠 reconstructions on a given level, resulting in a worst-case amortized cost of 𝑂 (𝑠 · 𝐶𝑟 (𝑛)/𝑛)
paid per level. The index itself will contain at most log𝑠 𝑛 levels. Thus, over the lifetime of the index
a given record will pay 𝑂

(
𝑠 · 𝐶𝑟 (𝑛)/𝑛 log𝑠 𝑛

)
cost in repeated reconstruction.

Combining these results, the total amortized insertion cost is 𝑂
(
𝐶𝑐 (𝑁𝑏)/𝑁𝑏 + 𝑠 · 𝐶𝑟 (𝑛)/𝑛 log𝑠 𝑛

)
.

This can be simplified by noting that 𝑠 is constant, and that 𝑁𝑏 ≪ 𝑛 and also a constant. By
neglecting these terms, the amortized insertion cost of the framework is,

𝑂

(
𝐶𝑟 (𝑛)
𝑛

log𝑠 𝑛
)

(1)

3.3 Sampling
For many SSIs, sampling queries are completed in two stages. Some preliminary processing is done
to identify the range of records from which to sample, and then samples are drawn from that range.
For example, IRS over a sorted list of records can be performed by first identifying the upper and
lower bounds of the query range in the list, and then sampling records by randomly generating
indexes within those bounds. The general cost of a sampling query can be modeled as 𝑃 (𝑛) +𝑘𝑆 (𝑛),
where 𝑃 (𝑛) is the cost of preprocessing, 𝑘 is the number of samples drawn, and 𝑆 (𝑛) is the cost of
sampling a single record.
When sampling from multiple shards, the situation grows more complex. For each sample, the

shard to select the record from must first be decided. Consider an arbitrary sampling query 𝑋 (𝐷,𝑘)
asking for a sample set of size 𝑘 against dataset 𝐷 . The framework splits 𝐷 across𝑚 disjoint shards,
such that 𝐷 =

⋃𝑚
𝑖=1 𝐷𝑖 and 𝐷𝑖 ∩ 𝐷 𝑗 = ∅,∀𝑖, 𝑗 < 𝑚. The framework must ensure that 𝑋 (𝐷,𝑘) and⋃𝑚

𝑖=0𝑋 (𝐷𝑖 , 𝑘𝑖) follow the same distribution, by selecting appropriate values for the 𝑘𝑖s. If care is
not taken to balance the number of samples drawn from a shard with the total weight of the shard

under 𝑋 , then bias can be introduced into the sample set’s distribution. The selection of 𝑘𝑖s can be
viewed as an instance of WSS, and solved using the alias method.

When sampling using the framework, first the weight of each shard under the sampling query
is determined and a shard alias structure built over these weights. Then, for each sample, the
shard alias is used to determine the shard from which to draw the sample. Let𝑊 (𝑛) be the cost
of determining this total weight for a single shard under the query. The initial setup cost, prior
to drawing any samples, will be 𝑂

(
[𝑊 (𝑛) + 𝑃 (𝑛)] log𝑠 𝑛

)
, as the preliminary work for sampling

from each shard must be performed, as well as weights determined and alias structure constructed.
In many cases, however, the preliminary work will also determine the total weight, and so the
relevant operation need only be applied once to accomplish both tasks.

To ensure that all records appear in the sample set with the appropriate probability, the mutable
buffer itself must also be a valid target for sampling. There are two generally applicable techniques
that can be applied for this, both of which can be supported by the framework. The query being
sampled from can be directly executed against the buffer and the result set used to build a temporary
SSI, which can be sampled from. Alternatively, rejection sampling can be used to sample directly
from the buffer, without executing the query. In this case, the total weight of the buffer is used for
its entry in the shard alias structure. This can result in the buffer being over-represented in the
shard selection process, and so any rejections during buffer sampling must be retried starting from
shard selection. These same considerations apply to rejection sampling used against shards, as well.

Example 1. Consider executing a WSS query, with 𝑘 = 1000, across three shards containing integer
keys with unit weight. 𝑆1 contains only the key −2, 𝑆2 contains all integers on [1, 100], and 𝑆3 contains
all integers on [101, 200]. These structures are shown in Figure 3. Sampling is performed by first
determining the normalized weights for each shard: 𝑤1 = 0.005, 𝑤2 = 0.4975, 𝑤3 = 0.4975, which
are then used to construct a shard alias structure. The shard alias structure is then queried 𝑘 times,
resulting in a distribution of 𝑘𝑖s that is commensurate with the relative weights of each shard. Finally,
each shard is queried in turn to draw the appropriate number of samples.

Assuming that rejection sampling is used on the mutable buffer, the worst-case time complexity
for drawing 𝑘 samples from an index containing 𝑛 elements with a sampling cost of 𝑆 (𝑛) is,

𝑂
(
[𝑊 (𝑛) + 𝑃 (𝑛)] log𝑠 𝑛 + 𝑘𝑆 (𝑛)

)
(2)

3.4 Deletion
Because the shards are static, records cannot be arbitrarily removed from them. This requires that
deletes be supported in some other way, with the ultimate goal being the prevention of deleted
records’ appearance in sampling query result sets. This can be realized in two ways: locating the
record and marking it, or inserting a new record which indicates that an existing record should
be treated as deleted. The framework supports both of these techniques, the selection of which is
called the delete policy. The former policy is called tagging and the latter tombstone.
Tagging a record is straightforward. Point-lookups are performed against each shard in the

index, as well as the buffer, for the record to be deleted. When it is found, a bit in a header
attached to the record is set. When sampling, any records selected with this bit set are automatically
rejected. Tombstones represent a lazy strategy for deleting records. When a record is deleted using
tombstones, a new record with identical key and value, but with a “tombstone” bit set, is inserted
into the index. A record’s presence can be checked by performing a point-lookup. If a tombstone
with the same key and value exists above the record in the index, then it should be rejected when
sampled.

A

A

A

A

MB

L0

L1

L2 ...

x

(1)

(2)

(3)(4)

(5)

(6)(7)

rejection check

(a) Tombstone Rejection Check

A

A

A

A

MB

L0

L1

L2 ...x

(1)

(2)rejection check

(b) Tagging Rejection Check

Fig. 4. The rejection check procedure when (1) a deleted record is sampled. When using the tombstone delete
policy (Figure 4a), the rejection check starts by (2) querying the bloom filter of the mutable buffer. The filter
indicates the record is not present, so (3) the filter on 𝐿0 is queried next. This filter returns a false positive, so
(4) a point-lookup is executed against 𝐿0. The lookup fails to find a tombstone, so the search continues and
(5) the filter on 𝐿1 is checked, which reports that the tombstone is present. This time, it is not a false positive,
and so (6) a lookup against 𝐿1 (7) locates the tombstone. The record is thus rejected. When using the tagging
policy (Figure 4b), (1) the record is sampled and (2) checked directly for the delete tag. It is set, so the record
is immediately rejected.

Two important aspects of performance are pertinent when discussing deletes: the cost of the
delete operation, and the cost of verifying the presence of a sampled record. The choice of delete
policy represents a trade-off between these two costs. Beyond this simple trade-off, the delete
policy also has other implications that can affect its applicability to certain types of SSI. Most
notably, tombstones do not require any in-place updating of records, whereas tagging does. This
means that using tombstones is the only way to ensure total immutability of the data within shards,
which avoids random writes and eases concurrency control. The tombstone delete policy, then, is
particularly appealing in external and concurrent contexts.
Deletion Cost. The cost of a delete under the tombstone policy is the same as an ordinary insert.
Tagging, by contrast, requires a point-lookup of the record to be deleted, and so is more expensive.
Assuming a point-lookup operation with cost 𝐿(𝑛), a tagged delete must search each level in the
index, as well as the buffer, requiring 𝑂

(
𝑁𝑏 + 𝐿(𝑛) log𝑠 𝑛

)
time.

Rejection Check Costs. In addition to the cost of the delete itself, the delete policy affects the
cost of determining if a given record has been deleted. This is called the rejection check cost, 𝑅(𝑛).
When using tagging, the information necessary to make the rejection decision is local to the
sampled record, and so 𝑅(𝑛) ∈ 𝑂 (1). However, when using tombstones it is not; a point-lookup
must be performed to search for a given record’s corresponding tombstone. This look-up must
examine the buffer, and each shard within the index. This results in a rejection check cost of
𝑅(𝑛) ∈ 𝑂

(
𝑁𝑏 + 𝐿(𝑛) log𝑠 𝑛

)
. The rejection check process for the two delete policies is summarized

in Figure 4.
Two factors contribute to the tombstone rejection check cost: the size of the buffer, and the

cost of performing a point-lookup against the shards. The latter cost can be controlled using the
framework’s ability to associate auxiliary structures with shards. For SSIs which do not support
efficient point-lookups, a hash table can be added to map key-value pairs to their location within
the SSI. This allows for constant-time rejection checks, even in situations where the index would
not otherwise support them. However, the storage cost of this intervention is high, and in situa-
tions where the SSI does support efficient point-lookups, it is not necessary. Further performance
improvements can be achieved by noting that the probability of a given record having an associated

tombstone in any particular shard is relatively small. This means that many point-lookups will be
executed against shards that do not contain the tombstone being searched for. In this case, these
unnecessary lookups can be partially avoided using Bloom filters [13] for tombstones. By inserting
tombstones into these filters during reconstruction, point-lookups against some shards which do
not contain the tombstone being searched for can be bypassed. Filters can be attached to the buffer
as well, which may be even more significant due to the linear cost of scanning it. As the goal is a
reduction of rejection check costs, these filters need only be populated with tombstones. In a later
section, techniques for bounding the number of tombstones on a given level are discussed, which
will allow for the memory usage of these filters to be tightly controlled while still ensuring precise
bounds on filter error.
Sampling with Deletes. The addition of deletes to the framework alters the analysis of sampling
costs. A record that has been deleted cannot be present in the sample set, and therefore the presence
of each sampled record must be verified. If a record has been deleted, it must be rejected. When
retrying samples rejected due to delete, the process must restart from shard selection, as deleted
records may be counted in the weight totals used to construct that structure. This increases the
cost of sampling to,

𝑂

(
[𝑊 (𝑛) + 𝑃 (𝑛)] log𝑠 𝑛 + 𝑘𝑆 (𝑛)

1 − Pr[rejection] · 𝑅(𝑛)
)

(3)

where 𝑅(𝑛) is the cost of checking if a sampled record has been deleted, and 𝑘/1−Pr[rejection] is
the expected number of sampling attempts required to obtain 𝑘 samples, given a fixed rejection
probability. The rejection probability itself is a function of the workload, and is unbounded.
Bounding the Rejection Probability. Rejections during sampling constitute wasted memory
accesses and random number generations, and so steps should be taken to minimize their frequency.
The probability of a rejection is directly related to the number of deleted records, which is itself a
function of workload and dataset. This means that, without building counter-measures into the
framework, tight bounds on sampling performance cannot be provided in the presence of deleted
records. It is therefore critical that the framework support some method for bounding the number
of deleted records within the index.
While the static nature of shards prevents the direct removal of records at the moment they

are deleted, it doesn’t prevent the removal of records during reconstruction. When using tagging,
all tagged records encountered during reconstruction can be removed. When using tombstones,
however, the removal process is non-trivial. In principle, a rejection check could be performed for
each record encountered during reconstruction, but this would increase reconstruction costs and
introduce a new problem of tracking tombstones associated with records that have been removed.
Instead, a lazier approach can be used: delaying removal until a tombstone and its associated record
participate in the same shard reconstruction. This delay allows both the record and its tombstone
to be removed at the same time, an approach called tombstone cancellation. In general, this can
be implemented using an extra linear scan of the input shards before reconstruction to identify
tombstones and associated records for cancellation, but potential optimizations exist for many SSIs,
allowing it to be performed during the reconstruction itself at no extra cost.
The removal of deleted records passively during reconstruction is not enough to bound the

number of deleted records within the index. It is not difficult to envision pathological scenarios
where deletes result in unbounded rejection rates, even with this mitigation in place. However,
the dropping of deleted records does provide a useful property: any specific deleted record will
eventually be removed from the index after a finite number of reconstructions. Using this fact, a
bound on the number of deleted records can be enforced. A new parameter, 𝛿 , is defined, representing
the maximum proportion of deleted records within the index. Each level, and the buffer, tracks

the number of deleted records it contains by counting its tagged records or tombstones. Following
each buffer flush, the proportion of deleted records is checked against 𝛿 . If any level is found to
exceed it, then a proactive reconstruction is triggered, pushing its shards down into the next level.
The process is repeated until all levels respect the bound, allowing the number of deleted records
to be precisely controlled, which, by extension, bounds the rejection rate. This process is called
compaction.
Assuming every record is equally likely to be sampled, this new bound can be applied to the

analysis of sampling costs. The probability of a record being rejected is Pr[rejection] = 𝛿 . Applying
this result to Equation 3 yields,

𝑂

(
[𝑊 (𝑛) + 𝑃 (𝑛)] log𝑠 𝑛 + 𝑘𝑆 (𝑛)

1 − 𝛿
· 𝑅(𝑛)

)
(4)

Asymptotically, this proactive compaction does not alter the analysis of insertion costs. Each
record is still written at most 𝑠 times on each level, there are at most log𝑠 𝑛 levels, and the buffer
insertion and SSI construction costs are all unchanged, and so on. This results in the amortized
insertion cost remaining the same.
This compaction strategy is based upon tombstone and record counts, and the bounds assume

that every record is equally likely to be sampled. For certain sampling problems (such asWSS), there
are other conditions that must be considered to provide a bound on the rejection rate. To account
for these situations in a general fashion, the framework supports problem-specific compaction
triggers that can be tailored to the SSI being used. These allow compactions to be triggered based
on other properties, such as rejection rate of a level, weight of deleted records, and the like.

3.5 Trade-offs on Framework Design Space
The framework has several tunable parameters, allowing it to be tailored for specific applications.
This design space contains trade-offs among three major performance characteristics: update cost,
sampling cost, and auxiliary memory usage. The two most significant decisions when implementing
this framework are the selection of the layout and delete policies. The asymptotic analysis of
the previous sections obscures some of the differences between these policies, but they do have
significant practical performance implications.
Layout Policy.The choice of layout policy represents a clear trade-off between update and sampling
performance. Leveling results in fewer shards of larger size, whereas tiering results in a larger
number of smaller shards. As a result, leveling reduces the costs associated with point-lookups
and sampling query preprocessing by a constant factor, compared to tiering. However, it results in
more write amplification: a given record may be involved in up to 𝑠 reconstructions on a single
level, as opposed to the single reconstruction per level under tiering.
Delete Policy. There is a trade-off between delete performance and sampling performance that
exists in the choice of delete policy. Tagging requires a point-lookup when performing a delete,
which is more expensive than the insert required by tombstones. However, it also allows constant-
time rejection checks, unlike tombstones which require a point-lookup of each sampled record. In
situations where deletes are common and write-throughput is critical, tombstones may be more
useful. Tombstones are also ideal in situations where immutability is required, or random writes
must be avoided. Generally speaking, however, tagging is superior when using SSIs that support it,
because sampling rejection checks will usually be more common than deletes.
Mutable Buffer Capacity and Scale Factor. The mutable buffer capacity and scale factor both
influence the number of levels within the index, and by extension the number of distinct shards.
Sampling and point-lookups have better performance with fewer shards. Smaller shards are also

faster to reconstruct, although the same adjustments that reduce shard size also result in a larger
number of reconstructions, so the trade-off here is less clear.
The scale factor has an interesting interaction with the layout policy: when using leveling, the

scale factor directly controls the amount of write amplification per level. Larger scale factors mean
more time is spent reconstructing shards on a level, reducing update performance. Tiering does
not have this problem and should see its update performance benefit directly from a larger scale
factor, as this reduces the number of reconstructions.
The buffer capacity also influences the number of levels, but is more significant in its effects

on point-lookup performance: a lookup must perform a linear scan of the buffer. Likewise, the
unstructured nature of the buffer also will contribute negatively towards sampling performance,
irrespective of which buffer sampling technique is used. As a result, although a large buffer will
reduce the number of shards, it will also hurt sampling and delete (under tagging) performance. It
is important to minimize the cost of these buffer scans, and so it is preferable to keep the buffer
small, ideally small enough to fit within the CPU’s L2 cache. The number of shards within the
index is, then, better controlled by changing the scale factor, rather than the buffer capacity. Using
a smaller buffer will result in more compactions and shard reconstructions; however, the empirical
evaluation in Section 6.1 demonstrates that this is not a serious performance problem when a scale
factor is chosen appropriately. When the shards are in memory, frequent small reconstructions do
not have a significant performance penalty compared to less frequent, larger ones.
Auxiliary Structures. The framework’s support for arbitrary auxiliary data structures allows for
memory to be traded in exchange for insertion or sampling performance. The use of Bloom filters
for accelerating tombstone rejection checks has already been discussed, but many other options
exist. Bloom filters could also be used to accelerate point-lookups for delete tagging, though such
filters would require much more memory than tombstone-only ones to be effective. An auxiliary
hash table could be used for accelerating point-lookups, or range filters like SuRF [52] or Rosetta
[33] added to accelerate pre-processing for range queries like in IRS or WIRS.

4 FRAMEWORK INSTANTIATIONS
In this section, the framework is applied to three sampling problems and their associated SSIs. All
three sampling problems draw random samples from records satisfying a simple predicate, and
so result sets for all three can be constructed by directly merging the result sets of the queries
executed against individual shards, the primary requirement for the application of the framework.
The SSIs used for each problem are discussed, including their support of the remaining two optional
requirements for framework application.

4.1 Dynamically Extended WSS Structure
As a first example of applying this framework for dynamic extension, the alias structure for
answering WSS queries is considered. This is a static structure that can be constructed in 𝑂 (𝑛)
time and supports WSS queries in 𝑂 (1) time. The alias structure will be used as the SSI, with the
shards containing an alias structure paired with a sorted array of records. The use of sorted arrays
for storing the records allows for more efficient point-lookups, without requiring any additional
space. The total weight associated with a query for a given alias structure is the total weight of all
of its records, and can be tracked at the shard level and retrieved in constant time.

Using the formulae from Section 3, the worst-case costs of insertion, sampling, and deletion are
easily derived. The initial construction cost from the buffer is𝐶𝑐 (𝑁𝑏) ∈ 𝑂 (𝑁𝑏 log𝑁𝑏), requiring the
sorting of the buffer followed by alias construction. After this point, the shards can be reconstructed
in linear time while maintaining sorted order. Thus, the reconstruction cost is 𝐶𝑟 (𝑛) ∈ 𝑂 (𝑛). As

each shard contains a sorted array, the point-lookup cost is 𝐿(𝑛) ∈ 𝑂 (log𝑛). The total weight
can be tracked with the shard, requiring𝑊 (𝑛) ∈ 𝑂 (1) time to access, and there is no necessary
preprocessing, so 𝑃 (𝑛) ∈ 𝑂 (1). Samples can be drawn in 𝑆 (𝑛) ∈ 𝑂 (1) time. Plugging these results
into the formulae for insertion, sampling, and deletion costs gives,

Insertion: 𝑂
(
log𝑠 𝑛

)
Sampling: 𝑂

(
log𝑠 𝑛 + 𝑘

1 − 𝛿
· 𝑅(𝑛)

)
Tagged Delete: 𝑂

(
log𝑠 𝑛 log𝑛

)
where 𝑅(𝑛) ∈ 𝑂 (1) for tagging and 𝑅(𝑛) ∈ 𝑂 (log𝑠 𝑛 log𝑛) for tombstones.
Bounding Rejection Rate. In the weighted sampling case, the framework’s generic record-based
compaction trigger mechanism is insufficient to bound the rejection rate. This is because the
probability of a given record being sampling is dependent upon its weight, as well as the number
of records in the index. If a highly weighted record is deleted, it will be preferentially sampled,
resulting in a larger number of rejections than would be expected based on record counts alone.
This problem can be rectified using the framework’s user-specified compaction trigger mechanism.
In addition to tracking record counts, each level also tracks its rejection rate,

𝜌𝑖 =
rejections

sampling attempts

A configurable rejection rate cap, 𝜌 , is then defined. If 𝜌𝑖 > 𝜌 on a level, a compaction is triggered.
In the case the tombstone delete policy, it is not the level containing the sampled record, but rather
the level containing its tombstone, that is considered the source of the rejection. This is necessary
to ensure that the tombstone is moved closer to canceling its associated record by the compaction.

4.2 Dynamically Extended IRS Structure
Another sampling problem to which the framework can be applied is independent range sampling
(IRS). The SSI in this example is the in-memory ISAM tree. The ISAM tree supports efficient
point-lookups directly, and the total weight of an IRS query can be easily obtained by counting the
number of records within the query range, which is determined as part of the preprocessing of the
query.
The static nature of shards in the framework allows for an ISAM tree to be constructed with

adjacent nodes positioned contiguously in memory. By selecting a leaf node size that is a multiple
of the record size, and avoiding placing any headers within leaf nodes, the set of leaf nodes can be
treated as a sorted array of records with direct indexing, and the internal nodes allow for faster
searching of this array. Because of this layout, per-sample tree-traversals are avoided. The start
and end of the range from which to sample can be determined using a pair of traversals, and then
records can be sampled from this range using random number generation and array indexing.
Assuming a sorted set of input records, the ISAM tree can be bulk-loaded in linear time. The

insertion analysis proceeds like the WSS example previously discussed. The initial construction
cost is 𝐶𝑐 (𝑁𝑏) ∈ 𝑂 (𝑁𝑏 log𝑁𝑏) and reconstruction cost is 𝐶𝑟 (𝑛) ∈ 𝑂 (𝑛). The ISAM tree supports
point-lookups in 𝐿(𝑛) ∈ 𝑂 (log𝑓 𝑛) time, where 𝑓 is the fanout of the tree.

The process for performing range sampling against the ISAM tree involves two stages. First, the
tree is traversed twice: once to establish the index of the first record greater than or equal to the
lower bound of the query, and again to find the index of the last record less than or equal to the
upper bound of the query. This process has the effect of providing the number of records within

the query range, and can be used to determine the weight of the shard in the shard alias structure.
Its cost is 𝑃 (𝑛) ∈ 𝑂 (log𝑓 𝑛). Once the bounds are established, samples can be drawn by randomly
generating uniform integers between the upper and lower bound, in 𝑆 (𝑛) ∈ 𝑂 (1) time each.

This results in the extended version of the ISAM tree having the following insert, sampling, and
delete costs,

Insertion: 𝑂
(
log𝑠 𝑛

)
Sampling: 𝑂

(
log𝑠 𝑛 log𝑓 𝑛 + 𝑘

1 − 𝛿
· 𝑅(𝑛)

)
Tagged Delete: 𝑂

(
log𝑠 𝑛 log𝑓 𝑛

)
where 𝑅(𝑛) ∈ 𝑂 (1) for tagging and 𝑅(𝑛) ∈ 𝑂 (log𝑠 𝑛 log𝑓 𝑛) for tombstones.

4.3 Dynamically Extended WIRS Structure
As a final example of applying this framework, the WIRS problem will be considered. Specifically,
the alias-augmented B+tree approach, described by Tao [46], generalizing work by Afshani and
Wei [6], and Hu et al. [27], will be extended. This structure allows for efficient point-lookups, as
it is based on the B+tree, and the total weight of a given WIRS query can be calculated given the
query range using aggregate weight tags within the tree.

The alias-augmented B+tree is a static structure of linear space, capable of being built initially in
𝐶𝑐 (𝑁𝑏) ∈ 𝑂 (𝑁𝑏 log𝑁𝑏) time, being bulk-loaded from sorted lists of records in 𝐶𝑟 (𝑛) ∈ 𝑂 (𝑛) time,
and answering WIRS queries in 𝑂 (log𝑓 𝑛 + 𝑘) time, where the query cost consists of preliminary
work to identify the sampling range and calculate the total weight, with 𝑃 (𝑛) ∈ 𝑂 (log𝑓 𝑛) cost, and
constant-time drawing of samples from that range with 𝑆 (𝑛) ∈ 𝑂 (1). This results in the following
costs,

Insertion: 𝑂
(
log𝑠 𝑛

)
Sampling: 𝑂

(
log𝑠 𝑛 log𝑓 𝑛 + 𝑘

1 − 𝛿
· 𝑅(𝑛)

)
Tagged Delete: 𝑂

(
log𝑠 𝑛 log𝑓 𝑛

)
where 𝑅(𝑛) ∈ 𝑂 (1) for tagging and 𝑅(𝑛) ∈ 𝑂 (log𝑠 𝑛 log𝑓 𝑛) for tombstones. Because this is a
weighted sampling structure, the custom compaction trigger discussed in in Section 4.1 is applied
to maintain bounded rejection rates during sampling.

5 EXTENSIONS
In this section, various extensions of the framework are considered. Specifically, the applicability
of the framework to external or distributed data structures is discussed, as well as the use of the
framework to add automatic support for concurrent updates and sampling to extended SSIs.
Larger-than-Memory Data. This framework can be applied to external static sampling structures
with minimal modification. As a proof-of-concept, the IRS structure was extended with support for
shards containing external ISAM trees. This structure supports storing a configurable number of
shards in memory, and the rest on disk, making it well suited for operating in memory-constrained
environments. The on-disk shards contain standard ISAM trees, with 8KiB page-aligned nodes.
The external version of the index only supports tombstone-based deletes, as tagging would require
random writes. In principle a hybrid approach to deletes is possible, where a delete first searches
the in-memory data for the record to be deleted, tagging it if found. If the record is not found, then

a tombstone could be inserted. As the data size grows, though, and the preponderance of data is
found on disk, this approach would largely revert to the standard tombstone approach in practice.
External settings make the framework even more attractive, in terms of performance characteristics,
due to the different cost model. In external data structures, performance is typically measured
in terms of the number of IO operations, meaning that much of the overhead introduced by the
framework for tasks like querying the mutable buffer, building auxiliary structures, extra random
number generations due to the shard alias structure, and the like, become far less significant.

Because the framework maintains immutability of shards, it is also well suited for use on top of
distributed file-systems or with other distributed data abstractions like RDDs in Apache Spark [51].
Each shard can be encapsulated within an immutable file in HDFS or an RDD in Spark. A centralized
control node or driver program can manage the mutable buffer, flushing it into a new file or RDD
when it is full, merging with existing files or RDDs using the same reconstruction scheme already
discussed for the framework. This setup allows for datasets exceeding the capacity of a single node
to be supported. As an example, XDB [32] features an RDD-based distributed sampling structure
that could be supported by this framework.
Concurrency. The immutability of the majority of the structures within the index makes for a
straightforward concurrency implementation. Concurrency control on the buffer is made trivial by
the fact it is a simple, unsorted array. The rest of the structure is never updated (aside from possible
delete tagging), and so concurrency becomes a simple matter of delaying the freeing of memory
used by internal structures until all the threads accessing them have exited, rather than immediately
on merge completion. A very basic concurrency implementation can be achieved by using the
tombstone delete policy, and a reference counting scheme to control the deletion of the shards
following reconstructions. Multiple insert buffers can be used to improve insertion throughput,
as this will allow inserts to proceed in parallel with merges, ultimately allowing concurrency to
scale up to the point of being bottlenecked by memory bandwidth and available storage. This
proof-of-concept implementation is based on a simplified version of an approach proposed by
Golan-Gueta et al. for concurrent log-structured data stores [24].

6 EVALUATION

Experimental Setup. All experiments were run under Ubuntu 20.04 LTS on a dual-socket Intel
Xeon Gold 6242R server with 384 GiB of physical memory and 40 physical cores. External tests
were run using a 4 TB WD Red SA500 SATA SSD, rated for 95000 and 82000 IOPS for random reads
and writes respectively.
Datasets. Testing utilized a variety of synthetic and real-world datasets. For all datasets used, the
key was represented as a 64-bit integer, the weight as a 64-bit integer, and the value as a 32-bit
integer. Each record also contained a 32-bit header. The weight was omitted from IRS testing. Keys
and weights were pulled from the dataset directly, and values were generated separately and were
unique for each record. The following datasets were used,

• Synthetic Uniform. A non-weighted, synthetically generated list of keys drawn from a
uniform distribution.

• Synthetic Zipfian. A non-weighted, synthetically generated list of keys drawn from a
Zipfian distribution with a skew of 0.8.

• Twitter [4, 31]. 41 million Twitter user ids, weighted by follower counts.
• Delicious [1]. 33.7 million URLs, represented using unique integers, weighted by the number
of associated tags.

• OSM [2]. 2.6 billion geospatial coordinates for points of interest, collected by OpenStreetMap.
The latitude, converted to a 64-bit integer, was used as the key and the number of its associated
semantic tags as the weight.

The synthetic datasets were not used for weighted experiments, as they do not have weights.
For unweighted experiments, the Twitter and Delicious datasets were not used, as they have
uninteresting key distributions.
Compared Methods. In this section, indexes extended using the framework are compared against
existing dynamic baselines. Specifically, DE-WSS (Section 4.1), DE-IRS (Section 4.2), and DE-WIRS
(Section 4.2) are examined. In-memory extensions are compared against the B+tree with aggregate
weight tags on internal nodes (AGG B+tree) [39] and concurrent and external extensions are
compared against the AB-tree [53]. Sampling performance is also compared against comparable
static sampling indexes: the alias structure [49] for WSS, the in-memory ISAM tree for IRS, and
the alias-augmented B+tree [6] for WIRS. Note that all structures under test, with the exception
of the external DE-IRS and external AB-tree, were contained entirely within system memory.
All benchmarking code and data structures were implemented using C++17 and compiled using
gcc 11.3.0 at the -O3 optimization level. The extension framework itself, excluding the shard
implementations and utility headers, consisted of a header-only library of about 1200 SLOC.

6.1 Framework Design Space Exploration
The proposed framework brings with it a large design space, described in Section 3.5. First, this
design space will be examined using a standardized benchmark to measure the average insertion
throughput and sampling latency of DE-WSS at several points within this space. Tests were run
using a random selection of 500 million records from the OSM dataset, with the index warmed up
by the insertion of 10% of the total records prior to beginning any measurement. Over the course
of the insertion period, 5% of the records were deleted, except for the tests in Figures 5c, 5f, and 5h,
in which 25% of the records were deleted. Reported update throughputs were calculated using both
inserts and deletes, following the warmup period. The standard values used for parameters not
being varied in a given test were 𝑠 = 6, 𝑁𝑏 = 12000, 𝑘 = 1000, and 𝛿 = 0.05, with buffer rejection
sampling.
The results of this testing are displayed in Figure 5. The two largest contributors to differences

in performance were the selection of layout policy and of delete policy. Figures 5a and 5b show
that the choice of layout policy plays a larger role than delete policy in insertion performance,
with tiering outperforming leveling in both configurations. The situation is reversed in sampling
performance, seen in Figure 5d and 5e, where the performance difference between layout policies
is far less than between delete policies.
The values used for the scale factor and buffer size have less influence than layout and delete

policy. Sampling performance is largely independent of them over the ranges of values tested, as
shown in Figures 5d and 5e. This isn’t surprising, as these parameters adjust the number of shards,
which only contributes to shard alias construction time during sampling and is is amortized over
all samples taken in a query. The buffer also contributes rejections, but the cost of a rejection is
small and the buffer constitutes only a small portion of the total weight, so these are negligible.
However, under tombstones there is an upward trend in latency with buffer size, as delete checks
occasionally require a full buffer scan. The effect of buffer size on insertion is shown in Figure 5a.
There is only a small improvement in insertion performance as the mutable buffer grows. This is
because a larger buffer results in fewer reconstructions, but these reconstructions individually take
longer, and so the net positive effect is less than might be expected. Finally, Figure 5b shows the
effect of scale factor on insertion performance. As expected, tiering performs better with higher

1×106

2×106

3×106

4×106

5×106

1×104 1×105 1×106

U
p

d
a
te

 T
h
ro

u
g

h
p

u
t

 (
u
p
d

a
te

s
/

se
c)

Mutable Buffer Capacity

Leveling, Tagging
Leveling, Tombstones

Tiering, Tagging
Tiering, Tombstones

(a) Insertion Throughput vs.
Mutable Buffer Capacity

1×106

2×106

3×106

4×106

5×106

 2 4 6 8 10

U
p

d
a
te

 T
h
ro

u
g

h
p

u
t

 (
u
p
d

a
te

s
/

se
c)

Scale Factor

Leveling, Tagging
Leveling, Tombstones

Tiering, Tagging
Tiering, Tombstones

(b) Insertion Throughput vs.
Scale Factor

1×106

2×106

3×106

4×106

5×106

 0 0.05 0.1 0.15 0.2 0.25

U
p

d
a
te

 T
h
ro

u
g

h
p

u
t

 (
u
p
d

a
te

s
/

se
c)

Max Delete Proportion

Leveling, Tagging
Leveling, Tombstones

Tiering, Tagging
Tiering, Tombstones

(c) Insertion Throughput vs.
Max Delete Proportion

1×102

1×103

1×104

1×105

1×106

1×104 1×105 1×106

S
a
m

p
lin

g
 L

a
te

n
cy

 (
μ

s)

Mutable Buffer Capacity

Leveling, Tagging
Leveling, Tombstones

Tiering, Tagging
Tiering, Tombstones

(d) Per 1000 Sampling Latency vs.
Mutable Buffer Capacity

1×102

1×103

1×104

1×105

1×106

 2 4 6 8 10

S
a
m

p
lin

g
 L

a
te

n
cy

 (
μ

s)

Scale Factor

Leveling, Tagging
Leveling, Tombstones

Tiering, Tagging
Tiering, Tombstones

(e) Per 1000 Sampling Latency vs.
Scale Factor

1×102

1×103

1×104

1×105

1×106

 0 0.05 0.1 0.15 0.2 0.25

S
a
m

p
lin

g
 L

a
te

n
cy

 (
μ

s)

Max Delete Proportion

Leveling, Tagging
Leveling, Tombstones

Tiering, Tagging
Tiering, Tombstones

(f) Per 1000 Sampling Latency vs.
Max Delete Proportion

0.0×100

5.0×10-1

1.0×100

1.5×100

1×100 1×102 1×104

S
a
m

p
lin

g
 L

a
te

n
cy

 (
μ

s)

Sample Size

Tiering, Tagging
Leveling, Tagging

(g) Sampling Latency vs.
Sample Size

0×100

1×104

2×104

3×104

 0 50 100 150 200 250

S
a
m

p
lin

g
 L

a
te

n
cy

 (
μ

s)

Bloom Filter Memory Usage (MiB)

Tiering, Tombstones

(h) Per 1000 Sampling Latency vs.
Bloom Filter Memory

Fig. 5. DE-WSS Design Space Exploration

scale factors, whereas the insertion performance of leveling trails off as the scale factor is increased,
due to write amplification.
Figures 5c and 5f show the cost of maintaining 𝛿 with a base delete rate of 25%. The low cost

of an in-memory sampling rejection results in only a slight upward trend in the sampling latency
as the number of deleted records increases. While compaction is necessary to avoid pathological
cases, there does not seem to be a significant benefit to aggressive compaction thresholds. Figure 5c
shows the effect of compactions on insert performance. There is little effect on performance under
tagging, but there is a clear negative performance trend associated with aggressive compaction
when using tombstones. Under tagging, a single compaction is guaranteed to remove all deleted
records on a level, whereas with tombstones a compaction can cascade for multiple levels before
the delete bound is satisfied, resulting in a larger cost per incident.
Figure 5h demonstrates the trade-off between memory usage for Bloom filters and sampling

performance under tombstones. This test was run using 25% incoming deletes with no compaction,
to maximize the number of tombstones within the index as a worst-case scenario. As expected,
allocating more memory to Bloom filters, decreasing their false positive rates, accelerates sampling.
Finally, Figure 5g shows the relationship between average per sample latency and the sample set

1×105

1×106

1×107

OSM Twitter Delicious

U
p

d
a
te

 T
h
ro

u
g

h
p

u
t

 (
u
p
d

a
te

s
/

se
c)

Dataset

AGG B+tree DE-WSS

(a) WSS Insertion Throughput
vs. Baselines

1×101

1×102

1×103

1×104

OSM Twitter Delicious

S
a
m

p
lin

g
 L

a
te

n
cy

 (
μ

s)

Dataset

AGG B+tree
DE-WSS

Static WSS

(b) WSS Sampling Latency
vs. Baselines

1×105

1×106

1×107

1×108

 1x106 1x107 1x108 1x109

U
p

d
a
te

 T
h
ro

u
g

h
p

u
t

 (
u
p
d

a
te

s
/

se
c)

Record Count

AGG B+tree DE-WSS

(c) WSS Insertion Scalability
vs. Baselines

1×101

1×102

1×103

1×104

1×105

 1x106 1x107 1x108 1x109

S
a
m

p
lin

g
 L

a
te

n
cy

 (
μ

s)

Record Count

AGG B+tree
DE-WSS

Static WSS

(d) WSS Sampling Scalability
vs. Baselines

1×105

1×106

1×107

OSM Twitter Delicious

U
p

d
a
te

 T
h
ro

u
g

h
p

u
t

 (
u
p
d

a
te

s
/

se
c)

Dataset

AGG B+tree DE-WIRS

(e) WIRS Insertion Throughput
vs. Baselines

1×101

1×102

1×103

1×104

OSM Twitter Delicious

S
a
m

p
lin

g
 L

a
te

n
cy

 (
μ

s)

Dataset

AGG B+tree
DE-WIRS

Static WIRS

(f) WIRS Sampling Latency
vs. Baselines

1×105

1×106

1×107

1×108

 1x106 1x107 1x108 1x109

U
p

d
a
te

 T
h
ro

u
g

h
p

u
t

 (
u
p
d

a
te

s
/

se
c)

Record Count

AGG B+tree DE-IRS

(g) IRS Insertion Scalability
vs. Baselines

1×101

1×102

1×103

1×104

1×105

 1x106 1x107 1x108 1x109

S
a
m

p
lin

g
 L

a
te

n
cy

 (
μ

s)

Record Count

AGG B+tree
DE-IRS

Static IRS

(h) IRS Sampling Scalability
vs. Baselines

1×105

1×106

1×107

Uniform Zipf 0.8 OSM

U
p

d
a
te

 T
h
ro

u
g

h
p

u
t

 (
u
p
d

a
te

s
/

se
c)

Dataset

AGG B+tree DE-IRS

(i) IRS Insertion Throughput
vs. Baselines

1×101

1×102

1×103

1×104

Uniform Zipf 0.8 OSM

S
a
m

p
lin

g
 L

a
te

n
cy

 (
μ

s)

Dataset

AGG B+tree
DE-IRS

Static IRS

(j) IRS Sampling Latency
vs. Baselines

2.0×102

6.7×102

2.2×103

7.4×103

 1x106 1x107 1x108 1x109

D
e
le

te
 L

a
te

n
cy

 (

n
s)

Record Count

AGG B+tree
DE-IRS

(k) IRS Delete Scalability
vs. Baselines

0.0×100

7.5×100

1.5×101

2.2×101

1×100 1×102 1×104

S
a
m

p
lin

g
 L

a
te

n
cy

 (
μ

s)

Sample Size

AGG B+tree
DE-IRS

Static IRS

(l) IRS Sampling Latency
vs. Sample Size

Fig. 6. Index Comparisons to Baselines

size. It shows the effect of amortizing the initial shard alias setup work across an increasing number
of samples, with 𝑘 = 100 as the point at which latency levels off.

Based upon these results, a set of parameters was established for the extended indexes, which is
used in the next section for baseline comparisons. This standard configuration uses tagging as the
delete policy and tiering as the layout policy, with 𝑘 = 1000, 𝑁𝑏 = 12000, 𝛿 = 0.05, and 𝑠 = 6.

6.2 Comparison to Baselines
Next, the performance of indexes extended using the framework is compared against tree sampling
on the aggregate B+tree, as well as problem-specific SSIs for WSS, WIRS, and IRS queries. Unless
otherwise specified, IRS and WIRS queries were executed with a selectivity of 0.1% and 500 million
randomly selected records from the OSM dataset were used. The uniform and zipfian synthetic
datasets were 1 billion records in size. All benchmarks warmed up the data structure by inserting
10% of the records, and then measured the throughput inserting the remaining records, while
deleting 5% of them over the course of the benchmark. Once all records were inserted, the sampling
performance was measured. The reported update throughputs were calculated using both inserts
and deletes, following the warmup period.
Starting with WSS, Figure 6a shows that the DE-WSS structure is competitive with the AGG

B+tree in terms of insertion performance, achieving about 85% of the AGG B+tree’s insertion
throughput on the Twitter dataset, and beating it by similar margins on the other datasets. In terms
of sampling performance in Figure 6b, it beats the B+tree handily, and compares favorably to the
static alias structure. Figures 6c and 6d show the performance scaling of the three structures as the
dataset size increases. All of the structures exhibit the same type of performance degradation with
respect to dataset size.

Figures 6e and 6f show the performance of the DE-WIRS index, relative to the AGG B+tree and
the alias-augmented B+tree. This example shows the same pattern of behavior as was seen with
DE-WSS, though the margin between the DE-WIRS and its corresponding SSI is much narrower.
Additionally, the constant factors associated with the construction cost of the alias-augmented
B+tree are much larger than the alias structure. The loss of insertion performance due to this is
seen clearly in Figure 6e, where the margin of advantage between DE-WIRS and the AGG B+tree
in insertion throughput shrinks compared to the DE-WSS index, and the AGG B+tree’s advantage
on the Twitter dataset is expanded. Finally, Figures 6i and 6j show a comparison of the in-memory
DE-IRS index against the in-memory ISAM tree and the AGG B+tree for answering IRS queries.
The cost of bulk-loading the ISAM tree is less than the cost of building the alias structure, or the
alias-augmented B+tree, and so here DE-IRS defeats the AGG B+tree by wider margins in insertion
throughput, though the margin narrows significantly in terms of sampling performance advantage.

DE-IRS was further tested to evaluate scalability. Figure 6g shows average insertion throughput,
Figure 6k shows average delete latency (under tagging), and Figure 6h shows average sampling
latencies for DE-IRS and AGG B+tree over a range of data sizes. In all cases, DE-IRS and B+tree
show similar patterns of performance degradation as the datasize grows. Note that the delete
latencies of DE-IRS are worse than AGG B+tree, because of the B+tree’s cheaper point-lookups.

Figure 6h also includes one other point of interest: the sampling performance of DE-IRS improves
when the data size grows from one million to ten million records. While at first glance the perfor-
mance increase may appear paradoxical, it actually demonstrates an important result concerning
the effect of the unsorted mutable buffer on index performance. At one million records, the buffer
constitutes approximately 1% of the total data size; this results in the buffer being sampled from
with greater frequency (as it has more total weight) than would be the case with larger data. The
greater the frequency of buffer sampling, the more rejections will occur, and the worse the sampling
performance will be. This illustrates the importance of keeping the buffer small, even when a scan
is not used for buffer sampling. Finally, Figure 6l shows the decreasing per-sample cost as the
number of records requested by a sampling query grows for DE-IRS, compared to AGG B+tree.
Note that DE-IRS benefits significantly more from batching samples than AGG B+tree, and that the
improvement is greatest up to 𝑘 = 100 samples per query.

1×103

1×104

1×105

1×106

1×107

1×108

Unif
 4B

Unif
 8B

Zipf
 4B

Zipf
 8B

OSMU
p

d
a
te

 T
h
ro

u
g

h
p

u
t

 (
u
p
d

a
te

s
/

se
c)

Dataset

AB-tree DE IRS

(a) External Insertion Throughput

1×102

2×103

4×104

8×105

2×107

Unif
 4B

Unif
 8B

Zipf
 4B

Zipf
 8B

OSM

S
a
m

p
lin

g
 L

a
te

n
cy

 (
μ

s)

Dataset

AB-tree DE-IRS

(b) External Sampling Latency

1×100

2×101

4×102

8×103

3.0×1056.0×1059.0×1051.2×106

In
se

rt
io

n
 L

a
te

n
cy

(μ
s)

Insertion Throughput (updates/sec)

AB-tree DE-IRS

(c) Concurrent Insert Latency vs.
Throughput

1×104

1×105

1×106

 1 2 4 8 16 32

U
p

d
a
te

 T
h
ro

u
g

h
p

u
t

 (
u
p
d

a
te

s
/

se
c)

Insertion Threads

AB-tree DE-IRS

(d) Concurrent Insert Throughput vs.
Thread Count

Fig. 7. External and Concurrent Extensions of DE-IRS

6.3 External and Concurrent Extensions
Proof of concept implementations of external and concurrent extensions were also tested for IRS
queries. Figures 7b and 7a show the performance of the external DE-IRS sampling index against AB-
tree. DE-IRS was configured with 4 in-memory levels, using at most 350 MiB of memory in testing,
including bloom filters. For DE-IRS, the O_DIRECT flag was used to disable OS caching, and CGroups
were used to limit process memory to 1 GiB to simulate a memory constrained environment. The
AB-tree implementation tested had a cache, which was configured with a memory budget of 64 GiB.
This extra memory was provided to be fair to AB-tree. Because it uses per-sample tree-traversals,
it is much more reliant on caching for good performance. DE-IRS was tested without a caching
layer. The tests were performed with 4 billion (80 GiB) and 8 billion (162 GiB) uniform and zipfian
records, and 2.6 billion (55 GiB) OSM records. DE-IRS outperformed the AB-tree by over an order
of magnitude in both insertion and sampling performance.
Finally, Figures 7c and 7d show the multi-threaded insertion performance of the in-memory

DE-IRS index with concurrency support, compared to AB-tree running entirely in memory, using
the synthetic uniform dataset. Note that in Figure 7c, some of the AB-tree results are cut off, due to
having significantly lower throughput and higher latency compared with the DE-IRS. Even without
concurrent merging, the framework shows linear scaling up to 4 threads of insertion, before leveling
off; throughput remains flat even up to 32 concurrent insertion threads. An implementation with
support for concurrent merging would scale even better.

7 RELATEDWORK
The general IQS problemwas first proposed by Hu, Qiao, and Tao [27] and has since been the subject
of extensive research [5, 6, 10, 50]. These papers involve the use of specialized indexes to assist in

drawing samples efficiently from the result sets of specific types of query, and are largely focused
on in-memory settings. A recent survey by Tao [46] acknowledged that dynamization remains
a major challenge for efficient sampling indexes. There do exist specific examples of sampling
indexes [27] designed to support dynamic updates, but they are specialized, and impractical due to
their implementation complexity and high constant-factors in their cost functions. A static index
for spatial independent range sampling [50] has been proposed with a dynamic extension similar
to the one proposed in this paper, but the method was not generalized, and its design space was
not explored. There are also weight-updatable implementations of the alias structure [8, 26, 34]
that function under various assumptions about the weight distribution. These are of limited utility
in a database context as they do not support direct insertion or deletion of entries. Efforts have also
been made to improve tree-traversal based sampling approaches. Notably, the AB-tree [53] extends
tree-sampling with support for concurrent updates, which has been a historical pain point.
The Bentley-Saxe method was first proposed by Saxe and Bentley [44]. Overmars and van

Leeuwen extended this framework to provide better worst-case bounds [42], but their approach
hurts common case performance by splitting reconstructions into small pieces and executing these
pieces each time a record is inserted. Though not commonly used in database systems, the method
has been applied to address specialized, problems, such as the creation of dynamic metric indexing
structures [35], analysis of trajectories [16], and genetic sequence search indexes [9].

8 CONCLUSION
This paper discussed the creation of a framework for the dynamic extension of static indexes
designed for various sampling problems. Specifically, extensions were created for the alias structure
(WSS), the in-memory ISAM tree (IRS), and the alias-augmented B+tree (WIRS). In each case, the
SSIs were extended successfully with support for updates and deletes, without compromising their
sampling performance advantage relative to existing dynamic baselines. This was accomplished
by leveraging ideas borrowed from the Bentley-Saxe method and the design space of the LSM
tree to divide the static index into multiple shards, which could be individually reconstructed in
a systematic fashion to accommodate new data. This framework provides a large design space
for trading between update performance, sampling performance, and memory usage, which was
explored experimentally. The resulting extended indexes were shown to approach or match the
insertion performance of the B+tree, while simultaneously performing significantly faster in
sampling operations under most situations.

REFERENCES
[1] 2023. Delicious Dataset. http://konect.cc/networks/delicious-ti/
[2] 2023. Open Street Map Dataset. https://planet.openstreetmap.org/
[3] 2023. PostgreSQL Documentation. https://www.postgresql.org/docs/15/sql-select.html
[4] 2023. Twitter Dataset. https://github.com/ANLAB-KAIST/traces/releases/tag/twitter_rv.net
[5] Peyman Afshani and Jeff M. Phillips. 2019. Independent Range Sampling, Revisited Again. In 35th International

Symposium on Computational Geometry, SoCG 2019, June 18-21, 2019, Portland, Oregon, USA (LIPIcs, Vol. 129), Gill
Barequet and Yusu Wang (Eds.). Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 4:1–4:13. https://doi.org/10.4230/
LIPIcs.SoCG.2019.4

[6] Peyman Afshani and Zhewei Wei. 2017. Independent Range Sampling, Revisited. In 25th Annual European Symposium
on Algorithms, ESA 2017, September 4-6, 2017, Vienna, Austria (LIPIcs, Vol. 87), Kirk Pruhs and Christian Sohler (Eds.).
Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 3:1–3:14. https://doi.org/10.4230/LIPIcs.ESA.2017.3

[7] Sameer Agarwal, Barzan Mozafari, Aurojit Panda, Henry Milner, Samuel Madden, and Ion Stoica. 2013. BlinkDB:
queries with bounded errors and bounded response times on very large data. In Eighth Eurosys Conference 2013, EuroSys
’13, Prague, Czech Republic, April 14-17, 2013, Zdenek Hanzálek, Hermann Härtig, Miguel Castro, and M. Frans Kaashoek
(Eds.). ACM, 29–42. https://doi.org/10.1145/2465351.2465355

http://konect.cc/networks/delicious-ti/
https://planet.openstreetmap.org/
https://www.postgresql.org/docs/15/sql-select.html
https://github.com/ANLAB-KAIST/traces/releases/tag/twitter_rv.net
https://doi.org/10.4230/LIPIcs.SoCG.2019.4
https://doi.org/10.4230/LIPIcs.SoCG.2019.4
https://doi.org/10.4230/LIPIcs.ESA.2017.3
https://doi.org/10.1145/2465351.2465355

[8] Daniel Allendorf. 2023. A Simple Data Structure for Maintaining a Discrete Probability Distribution. CoRR
abs/2302.05682 (2023). https://doi.org/10.48550/arXiv.2302.05682 arXiv:2302.05682

[9] Fatemeh Almodaresi, Jamshed Khan, Sergey Madaminov, Michael Ferdman, Rob Johnson, Prashant Pandey, and Rob
Patro. 2022. An incrementally updatable and scalable system for large-scale sequence search using the Bentley-Saxe
transformation. Bioinform. 38, 12 (2022), 3155–3163. https://doi.org/10.1093/bioinformatics/btac142

[10] Martin Aumüller, Rasmus Pagh, and Francesco Silvestri. 2020. Fair Near Neighbor Search: Independent Range Sampling
in High Dimensions. In Proceedings of the 39th ACM SIGMOD-SIGACT-SIGAI Symposium on Principles of Database
Systems, PODS 2020, Portland, OR, USA, June 14-19, 2020, Dan Suciu, Yufei Tao, and Zhewei Wei (Eds.). ACM, 191–204.
https://doi.org/10.1145/3375395.3387648

[11] Oana Balmau, Florin Dinu, Willy Zwaenepoel, Karan Gupta, Ravishankar Chandhiramoorthi, and Diego Didona.
2019. SILK: Preventing Latency Spikes in Log-Structured Merge Key-Value Stores. In 2019 USENIX Annual Technical
Conference, USENIX ATC 2019, Renton, WA, USA, July 10-12, 2019, Dahlia Malkhi and Dan Tsafrir (Eds.). USENIX
Association, 753–766. https://www.usenix.org/conference/atc19/presentation/balmau

[12] Omri Ben-Eliezer and Eylon Yogev. 2020. The Adversarial Robustness of Sampling. In Proceedings of the 39th ACM
SIGMOD-SIGACT-SIGAI Symposium on Principles of Database Systems, PODS 2020, Portland, OR, USA, June 14-19, 2020,
Dan Suciu, Yufei Tao, and Zhewei Wei (Eds.). ACM, 49–62. https://doi.org/10.1145/3375395.3387643

[13] Burton H. Bloom. 1970. Space/Time Trade-offs in Hash Coding with Allowable Errors. Commun. ACM 13, 7 (1970),
422–426. https://doi.org/10.1145/362686.362692

[14] M.G. Bulmer. 1979. Principles of Statistics. Dover, New York.
[15] Edith Cohen. 2023. Sampling Big Ideas in Query Optimization. In Proceedings of the 42nd ACM SIGMOD-SIGACT-SIGAI

Symposium on Principles of Database Systems, PODS 2023, Seattle, WA, USA, June 18-23, 2023, Floris Geerts, Hung Q.
Ngo, and Stavros Sintos (Eds.). ACM, 361–371. https://doi.org/10.1145/3584372.3589935

[16] Bram Custers, Mees van de Kerkhof, Wouter Meulemans, Bettina Speckmann, and Frank Staals. 2019. Maximum
Physically Consistent Trajectories. In Proceedings of the 27th ACM SIGSPATIAL International Conference on Advances in
Geographic Information Systems, SIGSPATIAL 2019, Chicago, IL, USA, November 5-8, 2019, Farnoush Banaei Kashani,
Goce Trajcevski, Ralf Hartmut Güting, Lars Kulik, and Shawn D. Newsam (Eds.). ACM, 79–88. https://doi.org/10.1145/
3347146.3359363

[17] Niv Dayan, Manos Athanassoulis, and Stratos Idreos. 2017. Monkey: Optimal Navigable Key-Value Store. In Proceedings
of the 2017 ACM International Conference on Management of Data, SIGMOD Conference 2017, Chicago, IL, USA, May
14-19, 2017, Semih Salihoglu, Wenchao Zhou, Rada Chirkova, Jun Yang, and Dan Suciu (Eds.). ACM, 79–94. https:
//doi.org/10.1145/3035918.3064054

[18] Niv Dayan, Manos Athanassoulis, and Stratos Idreos. 2018. Optimal Bloom Filters and Adaptive Merging for LSM-Trees.
ACM Trans. Database Syst. 43, 4 (2018), 16:1–16:48. https://doi.org/10.1145/3276980

[19] Niv Dayan and Stratos Idreos. 2018. Dostoevsky: Better Space-Time Trade-Offs for LSM-Tree Based Key-Value Stores
via Adaptive Removal of Superfluous Merging. In Proceedings of the 2018 International Conference on Management
of Data, SIGMOD Conference 2018, Houston, TX, USA, June 10-15, 2018, Gautam Das, Christopher M. Jermaine, and
Philip A. Bernstein (Eds.). ACM, 505–520. https://doi.org/10.1145/3183713.3196927

[20] Niv Dayan and Stratos Idreos. 2019. The Log-Structured Merge-Bush & the Wacky Continuum. In Proceedings of the
2019 International Conference on Management of Data, SIGMOD Conference 2019, Amsterdam, The Netherlands, June 30 -
July 5, 2019, Peter A. Boncz, Stefan Manegold, Anastasia Ailamaki, Amol Deshpande, and Tim Kraska (Eds.). ACM,
449–466. https://doi.org/10.1145/3299869.3319903

[21] Niv Dayan, Tamar Weiss, Shmuel Dashevsky, Michael Pan, Edward Bortnikov, and Moshe Twitto. 2022. Spooky:
Granulating LSM-Tree Compactions Correctly. Proc. VLDB Endow. 15, 11 (2022), 3071–3084. https://www.vldb.org/
pvldb/vol15/p3071-dayan.pdf

[22] Bolin Ding, Silu Huang, Surajit Chaudhuri, Kaushik Chakrabarti, and Chi Wang. 2016. Sample + Seek: Approximating
Aggregates with Distribution Precision Guarantee. In Proceedings of the 2016 International Conference on Management
of Data, SIGMOD Conference 2016, San Francisco, CA, USA, June 26 - July 01, 2016, Fatma Özcan, Georgia Koutrika, and
Sam Madden (Eds.). ACM, 679–694. https://doi.org/10.1145/2882903.2915249

[23] Siying Dong, Andrew Kryczka, Yanqin Jin, and Michael Stumm. 2021. RocksDB: Evolution of Development Priorities
in a Key-value Store Serving Large-scale Applications. ACM Trans. Storage 17, 4 (2021), 26:1–26:32. https://doi.org/10.
1145/3483840

[24] Guy Golan-Gueta, Edward Bortnikov, Eshcar Hillel, and Idit Keidar. 2015. Scaling concurrent log-structured data stores.
In Proceedings of the Tenth European Conference on Computer Systems, EuroSys 2015, Bordeaux, France, April 21-24, 2015,
Laurent Réveillère, Tim Harris, and Maurice Herlihy (Eds.). ACM, 32:1–32:14. https://doi.org/10.1145/2741948.2741973

[25] Jarek Gryz, Junjie Guo, Linqi Liu, and Calisto Zuzarte. 2004. Query Sampling in DB2 Universal Database. In Proceedings
of the ACM SIGMOD International Conference on Management of Data, Paris, France, June 13-18, 2004, Gerhard Weikum,
Arnd Christian König, and Stefan Deßloch (Eds.). ACM, 839–843. https://doi.org/10.1145/1007568.1007664

https://doi.org/10.48550/arXiv.2302.05682
https://arxiv.org/abs/2302.05682
https://doi.org/10.1093/bioinformatics/btac142
https://doi.org/10.1145/3375395.3387648
https://www.usenix.org/conference/atc19/presentation/balmau
https://doi.org/10.1145/3375395.3387643
https://doi.org/10.1145/362686.362692
https://doi.org/10.1145/3584372.3589935
https://doi.org/10.1145/3347146.3359363
https://doi.org/10.1145/3347146.3359363
https://doi.org/10.1145/3035918.3064054
https://doi.org/10.1145/3035918.3064054
https://doi.org/10.1145/3276980
https://doi.org/10.1145/3183713.3196927
https://doi.org/10.1145/3299869.3319903
https://www.vldb.org/pvldb/vol15/p3071-dayan.pdf
https://www.vldb.org/pvldb/vol15/p3071-dayan.pdf
https://doi.org/10.1145/2882903.2915249
https://doi.org/10.1145/3483840
https://doi.org/10.1145/3483840
https://doi.org/10.1145/2741948.2741973
https://doi.org/10.1145/1007568.1007664

[26] Torben Hagerup, Kurt Mehlhorn, and J. Ian Munro. 1993. Maintaining Discrete Probability Distributions Optimally.
In Automata, Languages and Programming, 20nd International Colloquium, ICALP93, Lund, Sweden, July 5-9, 1993,
Proceedings (Lecture Notes in Computer Science, Vol. 700), Andrzej Lingas, Rolf G. Karlsson, and Svante Carlsson (Eds.).
Springer, 253–264. https://doi.org/10.1007/3-540-56939-1_77

[27] Xiaocheng Hu, Miao Qiao, and Yufei Tao. 2014. Independent range sampling. In Proceedings of the 33rd ACM SIGMOD-
SIGACT-SIGART Symposium on Principles of Database Systems, PODS’14, Snowbird, UT, USA, June 22-27, 2014, Richard
Hull and Martin Grohe (Eds.). ACM, 246–255. https://doi.org/10.1145/2594538.2594545

[28] Xiaocheng Hu, Miao Qiao, and Yufei Tao. 2015. External Memory Stream Sampling. In Proceedings of the 34th ACM
Symposium on Principles of Database Systems, PODS 2015, Melbourne, Victoria, Australia, May 31 - June 4, 2015, Tova
Milo and Diego Calvanese (Eds.). ACM, 229–239. https://doi.org/10.1145/2745754.2745757

[29] Silu Huang, Chi Wang, Bolin Ding, and Surajit Chaudhuri. 2019. Efficient Identification of Approximate Best Con-
figuration of Training in Large Datasets. In The Thirty-Third AAAI Conference on Artificial Intelligence, AAAI 2019,
The Thirty-First Innovative Applications of Artificial Intelligence Conference, IAAI 2019, The Ninth AAAI Symposium on
Educational Advances in Artificial Intelligence, EAAI 2019, Honolulu, Hawaii, USA, January 27 - February 1, 2019. AAAI
Press, 3862–3869. https://doi.org/10.1609/aaai.v33i01.33013862

[30] Srikanth Kandula, Anil Shanbhag, Aleksandar Vitorovic, Matthaios Olma, Robert Grandl, Surajit Chaudhuri, and Bolin
Ding. 2016. Quickr: Lazily Approximating Complex AdHoc Queries in BigData Clusters. In Proceedings of the 2016
International Conference on Management of Data, SIGMOD Conference 2016, San Francisco, CA, USA, June 26 - July 01,
2016, Fatma Özcan, Georgia Koutrika, and Sam Madden (Eds.). ACM, 631–646. https://doi.org/10.1145/2882903.2882940

[31] Haewoon Kwak, Changhyun Lee, Hosung Park, and Sue B. Moon. 2010. What is Twitter, a social network or a news
media?. In Proceedings of the 19th International Conference on World Wide Web, WWW 2010, Raleigh, North Carolina,
USA, April 26-30, 2010, Michael Rappa, Paul Jones, Juliana Freire, and Soumen Chakrabarti (Eds.). ACM, 591–600.
https://doi.org/10.1145/1772690.1772751

[32] Feifei Li, Bin Wu, Ke Yi, and Zhuoyue Zhao. 2019. Wander Join and XDB: Online Aggregation via Random Walks.
ACM Trans. Database Syst. 44, 1 (2019), 2:1–2:41. https://doi.org/10.1145/3284551

[33] Siqiang Luo, Subarna Chatterjee, Rafael Ketsetsidis, Niv Dayan, Wilson Qin, and Stratos Idreos. 2020. Rosetta: A
Robust Space-Time Optimized Range Filter for Key-Value Stores. In Proceedings of the 2020 International Conference on
Management of Data, SIGMOD Conference 2020, online conference [Portland, OR, USA], June 14-19, 2020, David Maier,
Rachel Pottinger, AnHai Doan, Wang-Chiew Tan, Abdussalam Alawini, and Hung Q. Ngo (Eds.). ACM, 2071–2086.
https://doi.org/10.1145/3318464.3389731

[34] Yossi Matias, Jeffrey Scott Vitter, and Wen-Chun Ni. 2003. Dynamic Generation of Discrete Random Variates. Theory
Comput. Syst. 36, 4 (2003), 329–358. https://doi.org/10.1007/s00224-003-1078-6

[35] Bilegsaikhan Naidan and Magnus Lie Hetland. 2014. Static-to-dynamic transformation for metric indexing structures
(extended version). Inf. Syst. 45 (2014), 48–60. https://doi.org/10.1016/j.is.2013.08.002

[36] Frank Olken. 1993. Random Sampling from Databases. Ph. D. Dissertation. University of California at Berkeley.
[37] Frank Olken and Doron Rotem. 1986. Simple Random Sampling from Relational Databases. In VLDB’86 Twelfth

International Conference on Very Large Data Bases, August 25-28, 1986, Kyoto, Japan, Proceedings, Wesley W. Chu,
Georges Gardarin, Setsuo Ohsuga, and Yahiko Kambayashi (Eds.). Morgan Kaufmann, 160–169. http://www.vldb.org/
conf/1986/P160.PDF

[38] Frank Olken and Doron Rotem. 1989. Random Sampling from B+ Trees. In Proceedings of the Fifteenth International
Conference on Very Large Data Bases, August 22-25, 1989, Amsterdam, The Netherlands, Peter M. G. Apers and Gio
Wiederhold (Eds.). Morgan Kaufmann, 269–277. http://www.vldb.org/conf/1989/P269.PDF

[39] Frank Olken and Doron Rotem. 1995. Random sampling from databases: a survey. Statistics and Computing 5 (1995),
25–42. https://doi.org/10.1007/BF00140664

[40] Patrick E. O’Neil, Edward Cheng, Dieter Gawlick, and Elizabeth J. O’Neil. 1996. The Log-Structured Merge-Tree
(LSM-Tree). Acta Informatica 33, 4 (1996), 351–385. https://doi.org/10.1007/s002360050048

[41] Mark H. Overmars. 1983. The Design of Dynamic Data Structures. Lecture Notes in Computer Science, Vol. 156. Springer.
https://doi.org/10.1007/BFb0014927

[42] Mark H. Overmars and Jan van Leeuwen. 1981. Worst-Case Optimal Insertion and Deletion Methods for Decomposable
Searching Problems. Inf. Process. Lett. 12, 4 (1981), 168–173. https://doi.org/10.1016/0020-0190(81)90093-4

[43] Yongjoo Park, Barzan Mozafari, Joseph Sorenson, and Junhao Wang. 2018. VerdictDB: Universalizing Approximate
Query Processing. In Proceedings of the 2018 International Conference on Management of Data, SIGMOD Conference
2018, Houston, TX, USA, June 10-15, 2018, Gautam Das, Christopher M. Jermaine, and Philip A. Bernstein (Eds.). ACM,
1461–1476. https://doi.org/10.1145/3183713.3196905

[44] James B. Saxe and Jon Louis Bentley. 1979. Transforming Static Data Structures to Dynamic Structures (Abridged
Version). In 20th Annual Symposium on Foundations of Computer Science, San Juan, Puerto Rico, 29-31 October 1979.
IEEE Computer Society, 148–168. https://doi.org/10.1109/SFCS.1979.47

https://doi.org/10.1007/3-540-56939-1_77
https://doi.org/10.1145/2594538.2594545
https://doi.org/10.1145/2745754.2745757
https://doi.org/10.1609/aaai.v33i01.33013862
https://doi.org/10.1145/2882903.2882940
https://doi.org/10.1145/1772690.1772751
https://doi.org/10.1145/3284551
https://doi.org/10.1145/3318464.3389731
https://doi.org/10.1007/s00224-003-1078-6
https://doi.org/10.1016/j.is.2013.08.002
http://www.vldb.org/conf/1986/P160.PDF
http://www.vldb.org/conf/1986/P160.PDF
http://www.vldb.org/conf/1989/P269.PDF
https://doi.org/10.1007/BF00140664
https://doi.org/10.1007/s002360050048
https://doi.org/10.1007/BFb0014927
https://doi.org/10.1016/0020-0190(81)90093-4
https://doi.org/10.1145/3183713.3196905
https://doi.org/10.1109/SFCS.1979.47

[45] Konstantin Shvachko, Hairong Kuang, Sanjay Radia, and Robert Chansler. 2010. The Hadoop Distributed File System.
In IEEE 26th Symposium on Mass Storage Systems and Technologies, MSST 2012, Lake Tahoe, Nevada, USA, May 3-7, 2010,
Mohammed G. Khatib, Xubin He, and Michael Factor (Eds.). IEEE Computer Society, 1–10. https://doi.org/10.1109/
MSST.2010.5496972

[46] Yufei Tao. 2022. Algorithmic Techniques for Independent Query Sampling. In PODS ’22: International Conference on
Management of Data, Philadelphia, PA, USA, June 12 - 17, 2022, Leonid Libkin and Pablo Barceló (Eds.). ACM, 129–138.
https://doi.org/10.1145/3517804.3526068

[47] Jeffrey Scott Vitter. 1985. Random Sampling with a Reservoir. ACM Trans. Math. Softw. 11, 1 (1985), 37–57. https:
//doi.org/10.1145/3147.3165

[48] Michael D. Vose. 1991. A Linear Algorithm For Generating Random Numbers With a Given Distribution. IEEE Trans.
Software Eng. 17, 9 (1991), 972–975. https://doi.org/10.1109/32.92917

[49] A.J. Walker. 1974. New fast method for generating discrete random numbers with arbitrary frequency distributions.
Electronics Letters 10 (1974), 127–128(1). Issue 8.

[50] Dong Xie, Jeff M. Phillips, Michael Matheny, and Feifei Li. 2021. Spatial Independent Range Sampling. In SIGMOD
’21: International Conference on Management of Data, Virtual Event, China, June 20-25, 2021, Guoliang Li, Zhanhuai Li,
Stratos Idreos, and Divesh Srivastava (Eds.). ACM, 2023–2035. https://doi.org/10.1145/3448016.3452806

[51] Matei Zaharia, Mosharaf Chowdhury, Tathagata Das, Ankur Dave, Justin Ma, Murphy McCauly, Michael J. Franklin,
Scott Shenker, and Ion Stoica. 2012. Resilient Distributed Datasets: A Fault-Tolerant Abstraction for In-Memory
Cluster Computing. In Proceedings of the 9th USENIX Symposium on Networked Systems Design and Implementation,
NSDI 2012, San Jose, CA, USA, April 25-27, 2012, Steven D. Gribble and Dina Katabi (Eds.). USENIX Association, 15–28.
https://www.usenix.org/conference/nsdi12/technical-sessions/presentation/zaharia

[52] Huanchen Zhang, Hyeontaek Lim, Viktor Leis, David G. Andersen, Michael Kaminsky, Kimberly Keeton, and Andrew
Pavlo. 2018. SuRF: Practical Range Query Filtering with Fast Succinct Tries. In Proceedings of the 2018 International
Conference on Management of Data, SIGMOD Conference 2018, Houston, TX, USA, June 10-15, 2018, Gautam Das,
Christopher M. Jermaine, and Philip A. Bernstein (Eds.). ACM, 323–336. https://doi.org/10.1145/3183713.3196931

[53] Zhuoyue Zhao, Dong Xie, and Feifei Li. 2022. AB-tree: Index for Concurrent Random Sampling and Updates. Proc.
VLDB Endow. 15, 9 (2022), 1835–1847. https://www.vldb.org/pvldb/vol15/p1835-zhao.pdf

[54] Zichen Zhu, Ju Hyoung Mun, Aneesh Raman, and Manos Athanassoulis. 2021. Reducing Bloom Filter CPU Overhead
in LSM-Trees on Modern Storage Devices. In Proceedings of the 17th International Workshop on Data Management
on New Hardware, DaMoN 2021, 21 June 2021, Virtual Event, China, Danica Porobic and Spyros Blanas (Eds.). ACM,
1:1–1:10. https://doi.org/10.1145/3465998.3466002

https://doi.org/10.1109/MSST.2010.5496972
https://doi.org/10.1109/MSST.2010.5496972
https://doi.org/10.1145/3517804.3526068
https://doi.org/10.1145/3147.3165
https://doi.org/10.1145/3147.3165
https://doi.org/10.1109/32.92917
https://doi.org/10.1145/3448016.3452806
https://www.usenix.org/conference/nsdi12/technical-sessions/presentation/zaharia
https://doi.org/10.1145/3183713.3196931
https://www.vldb.org/pvldb/vol15/p1835-zhao.pdf
https://doi.org/10.1145/3465998.3466002

	Abstract
	1 Introduction
	2 Background
	3 Dynamic Sampling Index Framework
	3.1 Framework Overview
	3.2 Insertion
	3.3 Sampling
	3.4 Deletion
	3.5 Trade-offs on Framework Design Space

	4 Framework Instantiations
	4.1 Dynamically Extended WSS Structure
	4.2 Dynamically Extended IRS Structure
	4.3 Dynamically Extended WIRS Structure

	5 Extensions
	6 Evaluation
	6.1 Framework Design Space Exploration
	6.2 Comparison to Baselines
	6.3 External and Concurrent Extensions

	7 Related Work
	8 Conclusion
	References

